Skip to content
Busque para obtener información sobre los productos y soluciones de InterSystems, las oportunidades de carrera y más.

Machine Learning Success Starts with Healthy Data

layered vector graphic in shades of blue indicating technology, data and machine learning

Machine learning (ML) and artificial intelligence (AI) are becoming core functions of successful organizations, with data playing an increasingly important role in making or breaking these applications.

The required fuel for effective and precise AI and ML is healthy, normalized, and comprehensive data. In today’s competitive business landscape, organizations can garner valuable insights from analytics to better inform the critical business decisions impacting their bottom line. Basing these decisions off of healthy data is often the difference between success and failure.

Poor or unhealthy data has been estimated to cost the US more than $3 trillion per year. Data science teams that don’t have access to enough data lack the necessary resources to build successful ML architectures and models, which can lead to potentially flawed systems and less-than-desirable outcomes.

The Foundation of Healthy Data: Organization

Healthy data is without duplicate records, missing information, formatting errors, incorrect information, or mismatched terminology. As the amount of data being generated and made available to organizations increases exponentially, collecting large amounts of data in an organized way can be a significant challenge. Failing to keep pace and properly collect this flood of data often results in missed insights and faulty outputs.

Organizations looking to optimize healthy data must think beyond business objectives and take an integrated approach, identifying what data will be collected - including from where and how - and cleaned, and how its use maps back to the desired business goals.

Healthy Data Benefits

Healthy data leads the way to better insights into all areas of the business. But even with the most cutting-edge models, a small piece of unhealthy data can significantly warp results. Healthy data has the ability to boost the effectiveness of an entire organization by providing:

  • Trusted Data: Organizations must be able to trust that their data is clean so that it can be relied on to make quick and accurate business decisions before an opportunity is lost or a threat is missed.
  • Real-Time Decisions and Actions: Working with healthy data empowers organizations to immediately use the data to guide decisions, and for intelligent programmatic actions to maintain a competitive edge.
  • Better AI: Using healthy data enables data scientists to focus more on conducting analyses that improve the business, instead of on data munging and wrangling.

Organizations require access to healthy data if they want to more efficiently leverage AI and ML, improve business outcomes, and increase operational efficiencies. It all begins with healthy, clean data - from there, the opportunities for business value are endless.

Learn more about Healthy Data.

Read the latest blog posts on Data Excellence.

Listen to the InterSystems Healthy Data podcast series.

Explore Additional Blog Posts Below

Nov 12, 2024
As digitalization increases in financial services, firms are dealing with a much higher volume of data in a variety of formats, from structured to unstructured.
Oct 10, 2023
Global Head of Product and Industry Marketing
May 09, 2023
Transforming Supply Chain Management for UST with Improved Orchestration and Real-Time Decision Intelligence
Sep 26, 2022
Combining both internal and external data improves performance in trading, while gaining greater insights into reducing risk and regulatory compliance.